Transitivity of Kim-independence

نویسندگان

چکیده

We prove several results on the behavior of Kim-independence upon changing base in NSOP1 theories. As a consequence, we that satisfies transitivity and this characterizes NSOP1. Moreover, characterize witnesses to Kim-dividing as exactly -Morley sequences. give applications, answering number open questions concerning transitivity, Morley sequences, local character

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Transitivity and Strong Transitivity

We discuss the relation between (topological) transitivity and strong transitivity of dynamical systems. We show that a transitive and open self-map of a compact metric space satisfying a certain expanding condition is strongly transitive. We also prove a couple of results for interval maps; for example it is shown that a transitive piecewise monotone interval map is strongly transitive.

متن کامل

Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity

We present a sound and complete graphical criterion for reading dependencies from the minimal undirected independence map of a graphoid that satisfies weak transitivity. We argue that assuming weak transitivity is not too restrictive.

متن کامل

Kim 19_09

Testing for cancer susceptibility gene, in particular mutations in the BRCA1 gene in association with hereditary breast/ovarian cancer has been extensively studied. We investigated germline mutations in the BRCA1 gene from two Korean hereditary breast/ovarian cancer families using direct DNA sequencing. Blood samples of the thirteen family members were studied. We found three missense mutations...

متن کامل

Topological transitivity

The concept of topological transitivity goes back to G. D. Birkhoff [1]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107573